Developments in Manufacturing Technologies Research
Co-operation between Riga Technical University and CERN

RTU Prof. Toms TORIMS - CERN Scientific Associate
Content

- Latest developments in Additive Manufacturing technologies
 - Case study 1: Application of laser cladding technology to the innovative in-situ repairs of the marine diesel engines
 - Case study 2: CERN experience - additive manufacturing of super-high-tech components of the particle accelerators

- Co-operation between RTU and CERN – road to success and opportunities for the science and industry
 - Big science and our place in it
 - Joint projects of novel technology developments – case of ARIES project
 - Opportunities for young scientists and engineers
In the context of

- Collaborative Technological Innovation
- Combining New technologies with New Business Models
Case study 1:
Application of laser cladding technology to the innovative in-situ repairs of the marine diesel engines
1913 - A worker poses for this picture, from the MAN factory, in Nurnberg
Common damages

www.southern-rebore.co.uk
Conventional grinding technology?

http://ngureco.hubpages.com/hub/Worl...-Engine-Maersks-170-Million-Investment-Wor...
In-stu crankshaft grinding technology?

http://www.metalock.dk/insitu_crankpins.html
Additive Manufacturing
Laser cladding technology
Laser cladding

Courtesy of TRUMPH
Laser cladding

- Surface cladding
 - 100 μm to 2 mm thickness
 - 100 μm to 2 mm single truck with cladding
 area range of sq/m

- Repairs
 - 100 μm to 2 mm single truck with
 - Multi-layer build-up
 - Exact material delivery

- Additive manufacturing
 - 3D material build-up
 - 30 μm to 1 mm lateral resolution
 - rapid design changes – very flexible
 - direct generation of complex parts made from eventually any material
Current applications

- Repair and refurbishment of high value components (e.g. tools, turbine blades, gas turbine and engine parts)
- Metallic coatings, rapid prototyping, layered metal deposition and nano-scale manufacturing
- Three main fields of application:
 - surface cladding
 - repair welding
 - generative manufacturing
Idea behind and EU/USA patent

Principal design of in-situ laser cladding device
Prototype device
Innovation

- platform can be placed directly on the crankshaft bearing surface to be repaired
- by fitting a laser cladding head onto this platform, the crankshaft surface, can be refurbished directly in the engine housing
- will generate considerable economic benefits
- no major technological or constructive obstacles were identified
Summary of Case study 1

- Collaborative – stakeholders
- Technological – novel and provides for the solution
- Innovation – patent and knowledge transfer

- Combining New technologies with New Business Models?
Case study 2: CERN experience – additive manufacturing of super-high-tech components of the particle accelerators

case of dipole End-Spacers

Thanks to CERN EN-MME Group and Arturs Vēvers
LHC Dipole magnets end-spacers
Another kind of Additive Manufacturing
Selective Laser Melting (SLM)
AM problems

- Support failure
- Deformation
AM problems
AM problems
AM problems
AM problems
AM problems

Objective: no deformation after HT
Why do you need AM simulation software?

- Predict deformation to design better supports and use optimal positioning
- Save time in manufacturing iterations
 - Higher chance to success on the first try
- Minimize scrap percentage
Main tasks:

- Review and compare available AM simulation software
- Simulate parts and compare results with scanned data
- Benchmarking of software with titanium End-Spacer
- What about Niobium?
Software comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Amphyon</th>
<th>Netfabb</th>
<th>Virfac</th>
<th>Exasim</th>
<th>Simufact</th>
</tr>
</thead>
<tbody>
<tr>
<td>File formats</td>
<td>STL</td>
<td>Many</td>
<td>Many</td>
<td>STL</td>
<td>Many</td>
</tr>
<tr>
<td>Cloud based simulation</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Calculation type</td>
<td>CPU/GPU</td>
<td>CPU</td>
<td>GPU</td>
<td>Cloud</td>
<td>CPU</td>
</tr>
<tr>
<td>Optimized positioning module</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Support generation</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Support import</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Support export</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Support structure type</td>
<td>Standard</td>
<td>Advanced</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Simulated parameters</td>
<td>Many</td>
<td>Many</td>
<td>Only temp.</td>
<td>Many</td>
<td>Many</td>
</tr>
<tr>
<td>Possibility to change process parameters</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Simulate more than 1 part</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Topology optimization</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SLM build support</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Calibration</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Result export</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes/can’t export deformed STL</td>
<td>Yes/can’t export deformed STL</td>
<td>Yes</td>
</tr>
</tbody>
</table>
End spacer F10049011 vertical
Summary

- Simulation software shows very close results to scanned part data.
- In longer period with more investigation it would be possible to fine-tune software parameters for even more precise results.
- Software helps to minimize unsuccessful projects.
- Each part are different and there isn’t a magic recipe for all parts.
Summary of Case study 2

- Collaborative – stakeholders – feedback to the industry
- Technological – *terra incognita*
- Innovation – well 15T… Ti…Ni

- Combining New technologies with New Business Models?
RTU and CERN

Co-operation between RTU and CERN – road to success and opportunities for the science and industry

– Big science and our place in it
– Joint projects of novel technology developments – case of ARIES project
– Opportunities for young scientists and engineers
CERN: founded in 1954: 12 European States
“Science for Peace”
Today: 22 Member States

~ 2500 staff
~ 1800 other paid personnel
~ 13000 scientific users
Budget (2017) ~ 1100 MCHF

Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom
Associate Members in the Pre-Stage to Membership: Cyprus, Serbia, Slovenia
Associate Member States: India, Pakistan, Turkey, Ukraine
Applications for Membership or Associate Membership: Brazil, Croatia, Lithuania, Russia
Observers to Council: Japan, Russia, United States of America; European Union, JINR and UNESCO
The Mission of CERN

- Push back the frontiers of knowledge
 E.g. the secrets of the Big Bang ... what was the matter like within the first moments of the Universe’s existence?

- Develop new technologies for accelerators and detectors
 - Information technology - the Web and the GRID
 - Medicine - diagnosis and therapy

- Train scientists and engineers of tomorrow

- Unite people from different countries and cultures
Next Scientific Challenge:

to understand the very first moments of our Universe after the Big Bang
Exploration of a new energy frontier in p-p and Pb-Pb collisions

LHC ring: 27 km circumference
CERN: Particle Physics and Innovation

- Interfacing between fundamental science and key technological developments

- CERN Technologies and Innovation
 - Accelerating particle beams
 - Detecting particles
 - Large-scale computing (Grid)
RTU – CERN co-operation

- Sine 2012 RTU has Framework Collaboration Agreement with CERN
 - scientific cooperation areas
 - Power electronics and energetics
 - Material processing technologies
 - Robotics
 - Material science
 - IT, Data and computer science
- Today two PhD students working on their doctoral thesis based on this agreement
2013 – first Latvian PhD students visit to CERN. Participants - PhD students from RTU and other Latvian universities. Hereafter once a year such visits take place.
RTU is partner in FCC

- 2015 – RTU signs Memorandum of Understanding with CERN about FCC (Further Circular Collider) research project

MoU Future Circular Collider

Memorandum of Understanding for the Future Circular Collider (FCC)
Study hosted by CERN

THE INSTITUTIONS, LABORATORIES, UNIVERSITIES AND THEIR FUNDING AGENCIES AND OTHER SIGNATORIES OF THIS MEMORANDUM OF UNDERSTANDING AND CERN AS THE HOST LABORATORY (“the Participants”)”

Whereas

At a dedicated session of the CERN Council held on 30 May 2013, the Council adopted the Update of the European Strategy for Particle Physics which included inter alia the following statement:

“...Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14TeV will be available. CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.”

The conceptual design study (the “FCC Study”) must be available in time for the next update of the European Strategy for Particle Physics foreseen to take place in 2018.
RTU plays in highest league

- together with other top 40 European scientific Institutes participates in ARIES project coordinated by CERN

- RTU:
 - technologies – improved coating for particle accelerators working surfaces
 - development of innovative radio frequency modulator – energy particle accelerator beam
 - Learning and development

- 2017 May 1st project started – RTU is partner in 3 WP. Total 500 000 eur.

Riga Technical University
ARIES project - I

- technologies – improved coating for particle accelerators working surfaces
ARIES project - II
– development of innovative radio frequency modulator – energy particle accelerator beam

Partners: GSI – Darmstadt, Frankfurt University, CERN
Riga Technical University
ARIES project - III

- Education and training – online course about particle accelerators
- RTU is developing online platform
Business at CERN

innovative concrete technology – R&D project
- "Primekss"
- RTU
- University of Latvia
RTU scientists at CERN
Viesturs Veckalns

- Quoting young physician: «We are investigating how color link between two can be observed in the CS detector».

- Perspective after PhD defense in RTU – work at CERN (CMS experiment) as project associate – 2018.

Involved in CERN CMS experiment since 2014. Represents RTU according to the agreement signed in 2012.
«Collimator thermal function analysis»

Stepans Šķļariks

Riga Technical University
Artūrs Ivanovs

Field of Research
Machine Learning for Robotics Applications

PhD Thesis
Development of a system for human recognition and wireless vital parameter monitoring in harsh environments

Expected outcome
Robotic platform with mounted sensors used by first-response brigades to locate people and monitor their vital parameters before sending in the rescue team.
Artūrs Vēvers

- Engineering Department - Mechanical & Materials Engineering Group
- Is investigating and comparing currently available simulation programs for 3D printing process simulations
- Is developing "End spacer" part simulation and creates supporting structure, that would provide minimal deformation during the printing process
CERN scientific associate
- Responsible for accelerator and related technology analysis. The aim is to identify fields, where these technologies can be beneficial for needs of society as well as production (i.e. medicine, mechanical engineering and machine construction)
- Latvian representative at CERN
World class scientists in Latvia

- Highly appreciated and well attended guest lecturers of leading CERN scientists in RTU CERN. Students from RTU as well as other universities in 2012., 2013., 2015. un 2016.

Dr. Paul Collier

Dr. Tadeusz Kurtyka

Dr. Christoph Schaefer
CERN science week in Latvia

22 - 26 May, 2017
Thank you!